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Abstract
Recently, a generalization of Emden’s equation has been proposed by one of
us in a form which embraces Thomas–Fermi-like theories. Here some specific
solutions are presented and discussed.

PACS numbers: 0530F, 0230H, 3115B

Recently [1], a generalization of Emden’s equation has been proposed, namely

d2φ(λ)n (x)

dx2
=

(
φ(λ)n (x)

)n
xn−1

[
1 + λ

φ(λ)n (x)

x

]n
. (1)

The motivation for the generalization (1) was to embrace equations arising in the simplest self-
consistent density functional theory: namely the Thomas–Fermi (TF) statistical method [2].
More precisely, for n = 3/2 and λ = 0, equation (1) is the usual dimensionless TF equation
designed to describe the screening of the nuclear potential energy −Ze2/r by the electron
density distribution in heavy atoms and positive ions. This is readily seen from the electron
gas relation between density (r) and Fermi momentum pF(r) that becomes, when used
locally [2]

(r) = 8π

3h3
pF(r). (2)

This is then to be combined with the equation expressing the constancy of the chemical potential
µ throughout the entire inhomogeneous electron density (r)

µ = p2
F(r)

2m
+ V (r) (3)

where V (r) is the self-consistent potential energy experienced by an electron in the atomic
ion. Eliminating pF(r) between equations (2) and (3) and invoking self-consistency through
Poisson’s equation

∇2V (r) = 4πe2(r) (4)
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then yields, for spherically symmetric atomic ions, and writing µ− V (r) = (Ze2/r) φ
(0)
3/2(x),

r = constZ−1/3 x, with Z the atomic number, equation (1) with λ = 0 and n = 3/2.
The introduction of a non-zero value of λ embraces the relativistic generalization of this
TF equation, which goes back to Vallarta and Rosen [3]. This is readily verified by
replacing the non-relativistic kinetic energy p2

F(r)/2m by the special relativity relation√
c2 p2

F(r) + m2
0 c

4 − m0 c
2, where the electron rest mass energy m0 c

2 has been subtracted
out in order to recover equation (3) in the non-relativistic limit c → ∞. In addition, it should
also be noted that, for the choices n = 1/2 and λ = 0 in equation (1) one is led back to
the equation of Kadomtsev [4] describing heavy atomic ions subjected to an intense external
magnetic field. For this same value of n, and λ �= 0, one obtains the relativistic generalization
of the Kadomtsev treatment derived by Hill et al [5].

Let us begin with solutions for λ = 0, i.e. the non-relativistic limit of equation (1). Then
(see also [1]),

φ(0)n (x) = Axβ (5)

is a solution, provided A and β are chosen as

A = (β(β − 1))
1

n−1 β = n− 3

n− 1
. (6)

Coulson and March [6] generalized the form (5) for n = 3/2, namely φ(0)3/2(x) = 144/x3 going
back to Sommerfeld [7], to read at sufficiently large x:

φ
(0)
3/2(x) = 144

x3

[
1 − F1

xc
+
F2

x2c
− · · ·

]
(7)

where the exponent c is given by

c = −7 +
√

73

2
≈ 0.772. (8)

The first achievement of this letter is to obtain the exponent c as a function of n appearing in
equation (1) for the non-relativistic limit in which λ tends to zero. Taking into account the fact
that equation (5), with A and β given by (6), is a solution of equation (1) for λ = 0, we can
find a more general solution near the point of infinity in the form

φ(0)n (x) = Axβ g(x−c) (9)

where c > 0 is a parameter to be determined, and g(z) is an analytic function. It is easy to
prove that the function g(z) satisfies the differential equation

g′′(z) +

(
c + 1 − 2β

c z

)
g′(z) +

(
β(β − 1)

c2 z2

)
(g(z)− gn(z)) = 0. (10)

If n � 0, z = 0 is a regular singular point of the equation. We can try to find a solution of (10)
as a Taylor series

g(z) =
∞∑
�=0

g� z
� (11)

and we find from the two lowest order powers of z that g0 = 1 and

c2 + (1 − 2β)c + β(β − 1)(1 − n) = 0. (12)

The last equation has two solutions

c = (n− 5)± √
1 + 22n− 7n2

2(n− 1)
. (13)
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Figure 1. (a) A plot of c+(n) from equation (13) with the positive sign before the square root. (b)
Same as (a) but for c−(n) from equation (13).

With the positive sign, the solution, c+ say, is c+ > 0 if n � 3, and it has the form shown in
figure 1(a). The range of n over which c+ is purely real is given by

−0.05 ≈ 11 − 8
√

2

7
< n <

11 + 8
√

2

7
≈ 3.19. (14)

For the solution, c−, corresponding to the negative sign in equation (13), there is also a region
of positive c−, but then c− has singular behaviour at n = 1, as shown in figure 1(b).

In principle, given F1 in equation (7), the coefficients F�, � > 1, can be derived, but we
shall not present that degree of detail here. The same is true for the coefficients g� of g(z) in
equation (11).

Rather, we turn to the modifications that are induced in the solution (5) by the retention of
λ �= 0 in equation (1). As discussed in detail by Senatore and March [8] for the case n = 3/2,
the Sommerfeld solution φ(0)3/2(x) = 144/x3 corresponding to λ = 0 is modified to read

φ
(λ)
3/2(x) = 144

x3
f

(
λ

x4

)
(15)

where f (s) satisfies another non-linear differential equation, f (0) being equal to unity to
regain the Sommerfeld solution. It turns out that f (s) has a simple pole, at x = xc say, and xc
depends on λ as xc ∝ λ1/4. Thus, figure 2 shows how non-zero λ affects the non-analyticity
in the φ–x plane for this specific case n = 3/2, λ �= 0.
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Figure 2. This plot depicts the φ
(λ)
n (x) plane ‘divided’ by the non-relativistic solution in

equation (5). For n = 3/2, φ(λ)3/2(x) = (144/x3) f3/2(λ/x
4) and f3/2(s) has a simple pole at

s = sc ∼ 10−2.

Our second objective below is to mathematically describe the way the λ = 0 solution
given by equations (5) and (6) is altered by relativistic effects characterized by λ �= 0. In
order to do that, we will try to find a solution of equation (1) in a form similar to those already
considered, like for example (15)

φ(λ)n (x) = Axβ fn(λ/x
γ ). (16)

The parameters A, β, γ are chosen in such a way as to have a relatively simple differential
equation for the function fn(s), satisfying fn(0) = 1. If we take A, β depending on n as given
in equations (6), and γ = 1 − β, we obtain the following equation:

2s2 f ′′
n (s) + (7 − n)s f ′

n(s) + (3 − n) fn(s) = (3 − n) (fn(s) + As f 2
n (s))

n. (17)

This equation reduces to the form given by Senatore and March [8] for the particular case
n = 3/2. In order to investigate if the non-linear differential equation (17) has a singularity at
a finite value of s = λ/xγ , say sc, we try to find a solution of it which in the neighbourhood
of sc behaves like

fn(s) ∼ α(sc − s)−µ µ > 0. (18)

After a simple calculation we can see that the parameter µ depends on n as

µ = 2

2n− 1
(19)

and α, sc are related through

α2n−1 sn−2
c = 2µ(µ + 1)

(3 − n)An
. (20)

From these results we can see that for different values of n, the singular solution near sc is of a
different type; for example, it is a simple pole for n = 3/2 (the example analysed by Senatore
and March in [8]), a triple pole for n = 5/6, etc. For n = 1/2 (the case of heavy positive atomic
ions in intense applied magnetic fields) the solution seems to present an essential singularity,
and for other values of n, sc will be a branch point. In any case, the singularity on the variable
x, say xc, depends on λ as xc ∝ λ(n−1)/2.
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Another possibility we can explore is to find a solution of (17) as a power series solution
around s = 0, taking into account that fn(0) = 1. The radius of convergence of this series
depends on n and determines the position of the singularity sc. We show here the first terms
of the series

fn(s) = 1 + a1s + a2s
2 + · · · = 1 +

[
n(3 − n)A

n2 − 5n + 10

]
s

+

[
2A2n(n5 − 12n4 + 63n3 − 173n2 + 220n− 75)

(n2 − 5n + 10)2(n2 − 6n + 21)

]
s2 + · · · .

Again, for the special case n = 3/2, this solution coincides with the result of Senatore and
March [8].

In summary, the main results are embodied in equation (13), and the corresponding figure 1,
which generalizes the shape (only) of the Coulson–March solution (7) of the generalized TF
equation (1) in the non-relativistic limit to have a dependence of the exponent c on the power
n in equation (13). For the case when relativistic effects are included, the principal findings
are that the solution (15) appropriate to n = 3/2 and non-zero λ generalizes to

φ(λ)n (x) = Axβ fn (λ/x
γ ) . (21)

The other case of immediate physical interest corresponds to n = 1/2, which applies to heavy
positive atomic ions (plus neutral atoms) in intense applied magnetic fields. However, β = 3 in
this case, and the physical significance of (21) appears to be quite different. We shall therefore
not pursue further the case of atoms in huge magnetic fields here (see, however, Lieb et al [9]
for a discussion of the limits of validity of the Kadomtsev treatment [4] of positive ions in
magnetic fields).
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